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A localization tbeorem for Beta approximation operators fi" (n = 1,2",,),
fi,,(t:x)=J,; h,,(X,II)/(U 'Idu, wbere

h,,(x,II)=(x"/B(n,n))(u" 1/(\ +.\U)'''), .1>0

has been proved and with the help of tbis theorem the uniform convergence of fi,J
to / every fixed interval [x" .\,] (0 < Xl :S {, < Cf,) has been established, ' 19X5

Academic Press, Inc.

L INTRODUCTION

In [3, Chap, VI], while studying conditions for the regularity of
sequence-to-sequence transformations, beta transform arose naturally, The
beta transform of order (p, q) is defined as

'" -.1_ ti! I

,:i6'"J¢(t);x] = I (1 + . )"+,,¢(t)dl
'0 xl

(Re p > 0, Re q > 0, Re x> 0).

(1.1 )

It has been discussed briefly in [3, Chap. VII l
Using the beta transform kernel, I" 1/(1 + Xt)1II + II (m, n ;:: I), a double

sequence of linear, positive, integral operators {Jmll (m, n = 1, 2'00') has been
introduced in [3, Chap. IXl The (m, n)th beta operator is

where

[311111(/; x) =r hlllll(x, u)f(n/mu) du,
o

(1.2)

.\11 Ull 1

h (, U)=--------
"'"" B(m, n) (1 +XU)III+11
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(m,n= 1, 2'00')'
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x>°andf(-) E M[O, :Jj) (M [0, :Jj) is the linear space of the functions f(t)
defined for t ~°and bounded and Lebesgue-measurable in every interval
[r, RJ (0 < r < R <:Jj) [1, Definition 1.1 J).

Some elementary properties and estimates for these operators have been
given in [5 J and [6]. It has been proved in [5, Theorem 2.1 J that

lim
1/1 . ~ -f ,}/ ---+ -.1

fi",,/I; x) =f(x), (1.3 )

if f(')ES[X 1 ,X 2 J (S[X 1,X 2 J is the linear space of bounded functions
f(-)EM[O, :Jj), continuous at all points of the fixed interval [X I ,X2J
(0:::; Xl < X 2 <Xl)). In case Xl = 0, the continuity at x 1 is one-sided [1,
Definition 2.1 ].

To avoid the double limit, we take m = n and obtain a sequence of the
operators

where

fi,,(f; x) = f f h//(x, u)f(u 1) du
()

(x>O), (1.4 )

XII Ufl I

h (\: u)-----~
// 0' - B(n, n) (1 +XU)2//

(n= 1, 2,00.),f(-)EM[0, (0).

It also follows easily that iff(-) E S[Xl' X 2J, then

lim (3//(f; x) =f(x)
!1-T

(1.5 )

Lupa~ [2J has also introduced a sequence of linear, positive, integral
operators IB// (termed beta operators) as follows:

where

,1

(1B,,f)(x) = I (3//(t, x)f(t) dt
o()

(n= 1,2'00')' (1.6)

1
fJ,,(t,x)= t"\(I-t)"(1 Xl,

B( nx + 1, n + 1 - nx)
X E [0, 1].

The kernel of these operators is from the beta distribution with positive
parameters p, ij and with the probability density function

h,u,(t) =0,

= t P 1( 1 - t)4 1/B( p, ij),

=0,

- 'Xc < t:::; 0;

0< t< 1;

p = nx + 1, ij = n + 1- nx.
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There is quite a difference between the definition and properties of the
operators (1.4) and (1.6) but both are closely related to the beta dis­
tribution of probability theory.

In this paper we give a localization theorem and a convergence theorem
(based on the localization theorem) for the operators (1.4).

2. THE RESULTS

DEFINITION 2.1 (Functional Space H(O,x)). H(O, x) is the linear
space of the functionsf(x)EM[O, CD) for which If(x)1 ~Px' (P>O, x>O,
x>O).

LEMMA 2.1. lff(x) E H(O, CD), then fJl1(f; x) exists for all n ~ [x] + 1.

THEOREM 2.1. Let f(x) and g(x) he functions such that

(i) f(x) E H(O, oc),

(ii) g(x)EM(O, oc),

(iii) f(x) is continuous adnd = g(x) at every point of the fixed inter­
val [X I,X2] (0<XI~X2<CD).

Then fJl1(f: x) exists for x ~ XI' n ~ [IX] + 1, and

lim fJl1(f; x) = lim fJl1( g; x) (2.1 )

in [XI' x 2 ], the convergence holding there uniformly.

Proo! Let n ~ [x] + I. Then by Lemma 2.1, fJ nCr; x) exists for
XE[X I ,X2] (0<XI~X2<OC). Hypothesis (iii) implies the existence of a
number 15 = 15(£) > 0, independent of x E [x I' x 2 ], and such that

If(u I ~ f(x)1 < £/2 and I g( U I ) - g(x) I < £/2 (2.2)

for lu-I-xl<b, n>O, u>O, and XE[X1,XJ. Also, by Hypotheses (i)
and (ii), we have

If(u 1)_g(U 1)1 ~Pu '+M,

where M = SUPO<I< x I g(t)I· Now, for a fixed XE [XI' x 2 ], we have

fJl1(f:xl-fJl1(g;X)= rx

hl1 (x,u)[f(u- l l-g(u- l l]du
'0

= J}, + J~.

(2.3 )



88 RITA UPRETI

where

f;, = r hl/(x, u)[f(u I) - g(u I)J du
"/I t= .\',

f I () tN l = lI:u>O,llI-x 1< .
x(x + (»)

and

(i = 1,2),

With the help of (2.2) and (2.5) of [I]. and Hypothesis (iii) we obtain

If},1 'S I:. (2.4)

Also, by (2.3) we have

If~' 'S M I h)x, u) dll + P I hl/(x, u) 1I Y du
"" 1/ C "v.:' "II '.'

+ I:, r' hl/(x,lI)lI 'i(u-x 1)2 dU (t= 6 _)
t-,o X(X+6)

'S(X2~6)2lM 2(n+l)
() (n-l)(n-2)

f
n n -. ex + 2) 1'( n +.. Y - 2)+ Px;

- nn) 1'(n)

_ 2 1'(n -y + 1) nn + y - 1) + l'(n -y) r(n +Y)11.
r(n ) n n ) r( n ) r( n ) fJ

We may choose a number n" sufficiently large and such that

for n>n,. (2.5)

(It is clear that n, is independent of XE[XI,XJ.) Thus, from (2.4) and
(2.5) we have

1/11/(/: x) - {JI/( g: x)1 'S 2c: (n > n,),

for every x E [x I , X 2]. This proves the theorem.
The following theorem is an immediate consequence of the preceding

one.

THEOREM 2.2. Let I(x) E H(O, cJ-J) he continuous at all points of the inter­

val [x I' x 2J (0 < x I 'S x 2< x). Then {UI; x) exist.l· PH x? x I' n? [ex J + I,
and

lim /11/(/: x) =f(x), lInijcJrlnly in [x I' X 2 ]. (2.6)
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Proof: The first part of the theorem follows by Lemma 2.1. Let

89

g(x) =f(x)

The precise values of g(x) at the remaining points of the interval (0, Cf])

(i.e., for 0 < x < X 1 and Xl < X < Xi) are unimportant, but we assume that g
is bounded and Lebesgue-measurable there.

Both functions f(x) and g(x) satisfy the assumptions made in
Theorem 2.1, thereby giving

lim fJ,,(f;x)= lim f3,,(g;x)
fl-X

in [Xl' Xl], the convergence holding there
uniformly.

Also, by [5, Theorem 2.1] we have

lim fJl1(g;x)=g(x),
11- Y

Summing up these results, we have

lim f3,,(f; x) = g(x),

Since f( x) = g( x) in [x I , Xl], the proof of the theorem follows.
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